skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sondhi, Yash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Synopsis Sexual selection drives the evolution of a broad diversity of traits, such as the enlarged claws of fiddler crabs, the high-energy behavioral displays of hummingbirds, the bright red plumage of house finches, the elaborated antennae of moths, the wing “snapping” displays of manakins and the calculated calls of túngara frogs. A majority of work in sexual selection has aimed to measure the magnitude of these traits. Yet, we know surprisingly little about the physiology shaping such a diversity of sexually selected behavior and supportive morphology. The energetic properties underlying sexual signals are ultimately fueled by metabolic machinery at multiple scales, from mitochondrial properties and enzymatic activity to hormonal regulation and the modification of muscular and neural tissues. However, different organisms have different physiological constraints and face various ecological selection pressures; thus, selection operates and interacts at multiple scales to shape sexually selected traits and behavior. In this perspective piece, we describe illustrative case studies in different organisms to emphasize that understanding the physiological and energetic mechanisms that shape sexual traits may be critical to understanding their evolution and ramifications with ecological selection. We discuss (1) the way sexual selection shapes multiple integrated components of physiology, behavior, and morphology, (2) the way that sexually selected carotenoid pigments may reflect some aspects of cellular processes, (3) the relationship between sexually selected modalities and energetics, (4) the hormone ecdysone and its role in shaping sex-specific phenotypes in insects, (5) the way varied interaction patterns and social contexts select for signaling strategies that are responsive to social scenes, and (6) the role that sexual selection may have in the exploitation of novel thermal niches. Our major objective is to describe how sexually selected behavior, physiology, and ecology are shaped in diverse organisms so that we may develop a deeper and more integrated understanding of sexual trait evolution and its ecological consequences. 
    more » « less
  3. Abstract With a great variety of shapes and sizes, compound eye morphologies give insight into visual ecology, development, and evolution, and inspire novel engineering. In contrast to our own camera-type eyes, compound eyes reveal their resolution, sensitivity, and field of view externally, provided they have spherical curvature and orthogonal ommatidia. Non-spherical compound eyes with skewed ommatidia require measuring internal structures, such as with MicroCT (µCT). Thus far, there is no efficient tool to characterize compound eye optics, from either 2D or 3D data, automatically. Here we present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data. We validate these algorithms on images, images of replicas, and µCT eye scans from ants, fruit flies, moths, and a bee. 
    more » « less
  4. Abstract Explanations of why nocturnal insects fly erratically around fires and lamps have included theories of “lunar navigation” and “escape to the light”. However, without three-dimensional flight data to test them rigorously, the cause for this odd behaviour has remained unsolved. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights. 
    more » « less
  5. Temporal ecological niche partitioning is an underappreciated driver of speciation. While insects have long been models for circadian biology, the genes and circuits that allow adaptive changes in diel-niches remain poorly understood. We compared gene expression in closely related day- and night-active non-model wild silk moths, with otherwise similar ecologies. Using an ortholog-based pipeline to compare RNA-Seq patterns across two moth species, we find over 25 pairs of gene orthologs showing differential expression. Notably, the genedisco,involved in circadian control, optic lobe and clock neuron development inDrosophila, shows robust adult circadian mRNA cycling in moth heads.Discois highly conserved in moths and has additional zinc-finger domains with specific nocturnal and diurnal mutations. We proposediscoas a candidate gene for the diversification of temporal diel-niche in moths. 
    more » « less
  6. Abstract Opsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster—at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera. 
    more » « less
  7. Abstract Characterising the frequency and timing of biological processes such as locomotion, eclosion or foraging, is often needed to get a complete picture of a species' ecology. Automated trackers are an invaluable tool for high‐throughput collection of activity data and have become more accurate and efficient with advances in computer vision and deep learning. However, tracking activity of small and fast flying animals remains a hurdle, especially in a field setting with variable light conditions. Commercial activity monitors can be expensive, closed source and generally limited to laboratory settings.Here, we present a portable locomotion activity monitor (pLAM), a mobile activity detector to quantify small animal activity. Our setup uses inexpensive components, builds upon open‐source motion tracking software, and is easy to assemble and use in the field. It runs off‐grid, supports low‐light tracking with infrared lights and can implement arbitrary light cycle colours and brightnesses with programmable LEDs. We provide a user‐friendly guide to assembling pLAM hardware, accessing its pre‐configured software and guidelines for using it in other systems.We benchmarked pLAM for insects under various laboratory and field conditions, then compared results to a commercial activity detector. They offer broadly similar activity measures, but our setup captures flight and bouts of motion that are often missed by beam breaking activity detection.pLAM can automate laboratory and field monitoring of activity and timing in a wide range of biological processes, including circadian rhythm, eclosion and diapause timing, pollination and flower foraging, or pest feeding activity. This low cost and easy setup allows high‐throughput animal behaviour studies for basic and applied ecology and evolution research. 
    more » « less